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Synopsis 

New models are developed to analyze the wet spinning process. These involve a formulation of 
simultaneous overall mass, force, and solvent mass transfer balances. In the first-order model, in- 
ternal concentration gradients and mass transfer resistance within the fiber are neglected. It is 
equivalent to the Kase-Matsuo melt spinning model. In the second-order model, concentration 
gradients and diffusion within the fiber are included. Comparison is made with an experimental 
study of wet spinning nylon-66 fibers. The first-order model seriously underpredicts final fiber 
diameter under conditions of specified spinline tension and spinning efflux. The second-order model 
gives better agreement between theory and experiment. 

INTRODUCTION 

Commercial synthetic fibers are produced by either melt or solution spinning 
processes. Melt spinning is the more rapid and efficient and polymers which 
may be handled in the molten state such as polyolefins, nylons, and polyester 
are melt spun. However, many polymers are thermally degraded below their 
melting temperatures, and fibers must be formed from them in solution. Indeed 
the first polymers formed into fibers were cellulosics, and the first patents in this 
area involve solution ~pinning.l-~ Today acrylics and aromatic polyamides as 
well as cellulosics are solution spun. The filamentous solutions emerging from 
the spinneret may be coagulated by either a bath of liquid which extracts the 
solvent (wet spinning) or blowing air to evaporate it (dry spinning). 

It is the purpose of the present paper to present a new analysis of the dynamics 
and mass transfer process occurring during wet spinning. Only a few earlier 
authors have turned their attention to this problem. An overall study of the 
dynamics of the wet spinning process was published by Brinegar and Epstein5 
in 1967. These authors attempted to interrelate the applied tension with drag, 
momentum, and rheological forces on the filament. Detailed analyses of special 
cases are given by Han and Sega16y7 and Yerushalmi and Shinnar8 which ignore 
mass transfer and coagulation effects and in one case also drag6,? and in the other 
non-Newtonian flow characteristics.8 The existence of nonuniform stress dis- 
tributions in the filament as coagulation proceeds in the bath is discussed by 
Ziabicki9 and by McKay, Ferguson, and Hudson.lo The mass transfer process 
in wet spinning has received consideration from various investigators beginning 
in the 1940s.11v12 Further studies of the mass transfer process are reported by 
Takizawa,13J4 Griffith,15 Paul,16 Booth,17 Epstein and Rosenthal,18 and Hancock, 
White, and S p r ~ i e l l . ' ~ , ~ ~  The latter authorslg note the occurrence of interfacial 
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instabilities during mass transfer and its influence on coagulation. None of these 
studies brings together the dynamics and mass transfer processes. 

There have been a number of useful studies of the related dry spinning process 
where mass transfer processes are of great importance. The papers of Fok and 
Griskey,21,22 Ohzawa, Nagano, and Matsu0,~3-~5 and Brezinsky, Williams, and 
LaNieve26 are to be noted. These authors bring together combined force, heat, 
and mass balances. The variation of elongational viscosity with concentration 
is considered. 

There are no general models of the interaction of dynamics and mass transfer 
in the wet spinning process. In the present paper, we develop a new series of 
models of varying sophistication of the wet spinning process. Calculations based 
on these models will be made and compared with experiment. The interaction 
of force balances and mass transfer processes are considered. Nonisothermal 
phenomena and energy balances are neglected. 

BALANCE EQUATIONS 

Overall and Polymer Phase Mass Balance 

Let G be the total forward mass flux of the polymer solution filament as it 
moves through the bath of a coagulating phase as shown in Figure 1. It may be 
expressed as the sum of polymer phase G, , solvent phase G, , and coagulant phase 
(within the filament) G,mass fluxes 

(1) 

If we let c be the mass fraction of solvent and cn of the coagulating nonsolvent 
in the solution, we may write 

G = Gp + G, + G, 

G, = pcAv ( 2 4  
with 

- 1 
c = - J c d a  

A 

Gp = p(1 - C - Z,), G, = pF,Au 

Here p is mass density, A is the cross-sectional area of the fiber, and u is the linear 

I Roll 

Fig. 1. Wet spinning process. 



WET SPINNING OF FIBERS 3159 

velocity. Density variations in the system are ignored. G, is constant along 
the length of the filament, but G, decreases with position from spinneret to 
take-up. Generally Cn and G, will be expected to be small. 

Dynamics 

The forces acting on a fiber spinline include take-up tension FL, frictional drag 
Fdrag, gravity Fgrav, and momentum fluxes. If we let the x axis run along the 
filament, between position x and position L ,  a force momentum flux balance 
yields27 

Here GL is the mass flux at  position L and G, a t  position x .  This balance ac- 
counts for the loss in mass occurring in the spinline as the solvent dissolves in 
the coagulation bath. 

As the fiber is largely pulled horizontally through a bath of approximately 
equal density. Fgrav should be expected to be small. The velocity of fibers 
moving through a coagulation bath is generally small. Despite the variation of 
G along the threadline, values of G, must be expected to be small. This suggests 
that for most applications of interest, eq. (3) reduces to 

The force F,, often called the rheological force Frheo, may be expressed as the 
stress integrated across the cross section 

The tensile stress a11 is related to the local rheological properties of the polymer 
solution. To a first approximation, it may be approximated through a spinline 
elongational viscosity xsp defined by 

gxx  = Xsp(du/dx) (6) 
Actually eq. (6) does little more than define xsp if the rheological behavior is more 
complicated than that of a viscous fluid. This is certainly the case for viscoelastic 
polymer solutions. 

The drag force may be expressed 

where the shear stress is 

Of = Cfpex+,u2/2 (8) 

Here Cf is the friction factor. Sano and Orii28 and Hamana, Matsui, and KatoZ9 
have determined the friction factor for moving threadlines. From the latter 
authors, 

Cf N 0.68( dU~air/Vair)-O.~ (9) 
where the subscript air refers to the ambient air. In wet spinning this would be 
replaced by the subscript ext for the coagulation of bath. 
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Mass Balance and Diffusion of Solvent 

We now consider the rates of solvent loss to the coagulation bath. In general 
we must develop a set of diffusion equations for the solvent molecules in both 
the moving filament and the surrounding bath. 

An overall mass balance on a moving filament has the form 

where K is an overall mass transfer coefficient and cg is the fraction of solvent 
in the coagulation bath. Equation (10) accounts for mass transfer resistance 
in both the fiber and bath phases. If we account for external, internal (fiber), 
and interfacial resistance, we may write K as 

1 1 1 1  _- -  - +-+- 
IS hext  hi hint 

where hext is the external liquid side, hint the internal fiber solid side, and hi the 
interfacial mass transfer coefficient. 

We may eliminate u in eqs. (2c)-(10), where we neglect F, to give 

[ "' ] = ISrd (F  - co) dx (1 - c )  

G, dF 
(1 - F ) 2  dx 

- = ISTd(E - co) 

The diffusion within the fiber is complex involving a ternery system, of poly- 
mer, solvent, and coagulant. Within the filament, diffusion processes will be 
governed by the diffusion equation in cylindrical coordinates. We may write 
radial fluxes j within the filament as30y31 

dC 

dr 
j ,  = -Dint-+ c(js + j n  + j p )  

Different simplifications are possible. We shall take 

j ,  + j ,  + j ,  g small (14) 
and neglect the presence of nonsolvent. This leads to 

- dc = - - -  1 b (rj,) = 1 (rDint 2) 
dt  r dr r dr 

where Dint is the concentration dependent diffusivity of the solvent within the 
fiber; Dint will in general be larger near the center of the filament where the sol- 
vent concentration is larger and smaller near the outer skin where the polymer 
concentration is higher. The boundary conditions are 

c(r, 0) = c; (15b) 
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1 

FIRST-ORDER MODEL 

Balance Equations 

'. . J may develop an approximate theory of the dynamics and mass transfer 
of the wet spinning process equivalent to the theories used to analyze the melt 
spinning process (see Table I). Such theories which include both dynamics and 
heat transfer date to Kase and M a t s u ~ ~ ~ ; ~ ~  and Hamana, Matsui, and K a t ~ . ~ ~  
They consider uniform properties across the fiber cross section and neglect heat 
transfer resistance within the fiber. In the problem of mass transfer in a fiber 
spinning process, this is equivalent to writing eqs. (4), (lo), and (12) as 

G, dC 
(1 - F ) 2  dx 

- = -Izextrd (C - CO) 

If we can represent the tensile stress ax, in eq. (16) with eq. (6) for the spinline 
elongational viscosity xsp, then using Eq. (2a) 

dv G 
dx dx p(1  - C ) A  g11= x s p -  = X s p d  [ ] 

and 

Equations (16) and (19) represent the force balance equation in this approxi- 
mation and eq. (17b) the mass balance on solvent. 

TABLE I 
Approximations of Models of This Paper 

Influence 
Radial Radial varjation of radial 

External concen- Internal mass Diffusion of of rheological properties 
mass transfer tration transfer coagulant in properties of variations of 

Model resistance gradient resistance filament filament solvent diffusity 
First order included neglected neglected neglected neglected - 
Second 

order included included included included included neglected 
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Placing our balances in dimensionless form, we have 

where xo is the initial spinline viscosity at  the capillary and do the initial fiber 
diameter. x* is x1/do and d* is dido. 

We find that d*(x*) and F(x*) depend upon the dimensionless groups 

The quantity kextdO/a)ext is an external Sherwood number, and Gp/pdo2leXt is 
a diffusion Peclet number. 

Before we may solve this set of equations, we need to further reduce the 
number of independent dimensionless groups. The ratio xsP/xo represents the 
concentration dependence of the spinline elongational viscosity. There are really 
no useful studies of this for polymer solutions. However, extensive data on the 
concentration dependence of the shear viscosity is available for p ~ l y m e r . ~ ~ - ~ ~  
In most systems investigated in the literature, the zero shear viscosity varies with 
the fifth power 

It is through eq. (22) that we implicitly account for the occurrence of coagulation. 
In the next section we turn to a discussion of external mass transfer, which will 
allow us to eliminate the dimensionless group kextdO/a)ext. 

Mass Transfer Coefficient 

The external mass transfer coefficient requires evaluation. However, there 
appear to be no suitable experimental data in the literature. In the absence of 
any data we may estimate the value using the analogy between heat transfer and 
mass tran~fer.~O,~l The most commonly used expression for the heat transfer 
coefficient h on a fiber spinline is that of Kase and M a t ~ u o ~ ~  which takes the 
form 

(hd/Kair) = 0-42(d~pair/~,i ,)”~ (23) 
where Kair is the thermal conductivity of the air. 

equations of change for diffusion suggest the form30,31 
Turning now to the mass transfer coefficient, dimensional analysis of the 

kextdlaext = N S h  = F”Re, N S c ]  (24a) 

where N S h ,  N R ~ ,  and Nsc are dimensionless groups defined by eqs. (24a) and 
(24b) which represent the Sherwood, Reynolds, and Schmidt numbers, respec- 
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tively. If we accept the heat transfer-mass transfer analogy, the equivalent of 
the Kase-Matsuo relation [eq. (23)] is 

(25) 

where we have noted that the Prandtl number (heat transfer equivalent to the 
Schmidt number30 for air is 0.7, and, as noted by Chilton and Colburn and later 
investigators, the power of the Schmidt and Prandtl numbers on mass transfer 
correlations for Nusselt and Sherwood numbers is invariably 1/3. With the 
presumption of eq. (25) we specifically omit from our modeling fibers in which 
Marangoni-type instabilities occur during mass transfer. As noted in our pre- 
vious paper,lg such phenomena commonly occur in wet spinning when there are 
high heats of solution between solvent and coagulant. However, they give rise 
to undesirable fibers containing fluted void structures. 

N S h  = 0.47 N ~ ~ l ’ 3  Nsc1I3 

If we accept eq. (25) for hext, it allows us to rewrite eq. (21) as 

Calculations 

We have made calculations of the extent of drawdown of wet spun fibers using 
the model of this section. From eqs. (20), (21), (25), and (26), it  follows that 

or 

First Order Model 

P- -19110~ 
%%I,% 

ircreasing - 

I 
* 
U 

1 
0 500 10 

x * .  - 
0 

Fig. 2. Theoretical prediction of drawdown d*(d/do) as a function of distance from the spinneret 
in the bath x*(d/do) for the first-order model. We show the influence of increasing pFLdo/XoCp 
at fixed GPlpDextdo of 19,000. 
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1.0 
First Order Model 

x”  , - 
Fig. 3. Theoretical prediction of drawdown d*(d/do) as a function of distance from the spinneret 

in the bath x * ( x / d ~ )  for the first-order model. We show the influence of increasing GplpBD,,tdo 
a t  fixed pFLdo/XG, of 0.20. 

We have generally found that FL considerably exceeds Fdrag in most experiments 
carried out in our laboratories, and we have neglected drag here. 

Calculations based on these expressions are shown in Figures 2 and 3. In 
Figure 2, we show d* as a function of F ~ p d o / x O G ~  at fixed Sherwood and Peclet 
numbers. For the special case of zero (kext) we have 

d* = exp { - [ F ~ p d ~ ( l  - F)/2xoGP] x * )  (28) 
The dimensionless diameter decreases exponentially with drawdown. This is 
the classical melt spinning solution for a Newtonian fluid. A similar trend is 
observed in Figures 2 and 3 where near exponential behavior is observed. In- 
creasing kextdO/Bext or (GP/pd&Oext) decreases the rate and extent of drawdown. 
This is clearly due to the increasing elongational viscosity of the “spinning dope” 
brought about by increases in polymer concentration along the spinline. 

Critique 

The basic problem with the model described in the previous section is that, 
from a scientific point of view, radial variations in the fiber are neglected and 
that internal resistance to mass transfer is not considered. Use of an averaged 
viscosity x s p ( C )  rather than considering the radial variation of X(r)  tends to 
predict a lower resistance of the filament to deformation. Neglect of internal 
resistance to mass transfer makes the diffusion of the solvent out of the fiber 
occur more rapidly. 

SECOND-ORDER MODEL 

Balance Equations 

In this approximation we consider radial variations in polymer and solvent 
concentration within the fiber as well as internal mass transfer resistance. We 
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replace eqs. (16) and (17a) with 

The concentration profile within the fiber is given by the diffusion equation, eq. 
(15a), with boundary conditions eqs. (15b)-(15d). We take in this approximation 
on internal diffusion that the diffusivity is constant. This solution has the form 
for constant R38 

where Bintt/R2 is the diffusion Fourier number and Pn are the roots of 

.PnJl(Pn)  - NSh,extJO(Pn) = 0 (31) 

where NSh,ext is hextd/aext. The Fourier number is now a parameter of the 
problem. 

As the fiber diameter is drawn down in the bath, i.e., R = R(t ) ,  eq. (30) is not 
strictly the correct solution. However, we will accept it as being valid within 
.this second-order model. 

Placing our balances in dimensionless form similar to eqs. (20) and (21) 
dlnd* 1 dC 

= -2- +-- (324 
(FL + Fdrag)PdO 1 - C  

X o G p  dx ( l - ~ ) d ~ *  

The internal mass transfer coefficient hint for a cylinder may be expressed, 
after G i d d i n g ~ , ~ ~  as 

We may write 
kint = 0.25a>inJR (33) 

kext 2NSh.ext 
kint a i n t / a e x t  

- 

The external Sherwood number is given by eq. (25). 

(34) 

Calculations 

The reduction in diameter as the fiber moves through the bath is determined 
by the dimensionless groups 

or equivalently 
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0.5 1 9 ~ 1 0 ~  

in/creasing 
I 

PI", 

Second Order Model 
-lo-5 

1.d 1 I I 
0 500 10 

x" , - 3 

Fig. 4. Theoretical prediction of drawdown d*(d/do) as a function of distance from the spinneret 
x*(n /do)  for the second-order model. We show the influence of increasing G,/pB3,,tdo a t  fixed 
pFLdo/XoGp = 0.20 and BinJBext = 

Here 0 is a characteristic residence time in the bath. 
In Figures 4,5 ,  and 6 we show the drawdown of d * as a function of these di- 

mensionless groups where we have made calculations for the case of zero drag 
force. First in comparison with the one-dimensional model, the drawdown is 
much less. As with the first-order model, the drawdown increases with increasing 
FLpdolXoGp and with decreasing external Sherwood number. The drawdown 
also increases with decreasing a)int/Bext. 

An important parameter which is not noted explicitly in eq. (35) is the Trouton 
ratio xolq. For a Newtonian fluid this is 3, but as noted above it is often much 
higher in polymer solutions. Furthermore, it was found by Minoshima et al.40 

Second Order Model 

increasing - 

I 

* 
'0 

0.2 - 

0.1 
0 500 1000 

x" - 
Fig. 5. Theoretical prediction of drawdown d*(d/do) as a function of distance from the spinneret 

x*(d/do) for the second-order model. We show the influence of increasing pF&/xoGp a t  fixed 
G,/pBeXtdo of 19,000 and BinJBDext = loF5. 
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Second Order Model 

3167 

0 

Fig. 6. Theoretical prediction of drawdown d*(dldo) as a function of distance from the spinneret 
x*(x/do) for the second-order model. We show the influence of increasing d)int/Bext at  fixed 
pFLdolXoG, of 0.20 and G,lpBeXtdo of 19,000. 

in our laboratories that the spinline viscosity exceeds that found in normal el- 
ongational flow experiments. In Figure 7 it is shown that the higher the apparent 
Trouton ratio, the less the drawdown of the filament to occur. 

In Figure 8 we show the predicted concentration variations across the fiber 
cross section. 

1 .c 

I 

-or 
* 
'0 

- Second Order Model 

Trouton Ratio 

45 
30 

15 

L3 
0 

0 500 1000 15( 

x* , - 
Fig. 7. Theoretical prediction of drawdown d*(dldo) as a function of distance from the spinneret 

x * ( x l d o )  for the second-order model. We show the influence of increasing Trouton ratio xo/3Bo 
at  fixed G,lpDextdo of 25,000 and D;nt/Bext of 10-5. The value of pFLdOIXOGp varies with values 
0.30,0.20,0.10, and 0.02. 
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x*= 0 
0.7 

1.0 0.5 0 0.5 1 
2 r ld , ,  - 

Fig. 8. Concentration profile across filament showing c as a function of r/(d/2) for varying x *  with 
pFLdolG, = 0.20, G,IpD,,tdo of 25,000 and DinJDext of 

EXPERIMENTAL 

Materials 

Fibers were wet spun from solutions of nylon-66 (Du Pont Zytel) in formic acid 
(Fisher Scientific). The coagulation baths were water and 15 weight percent 
solutions of formic acid in water (compare our earlier paper~l~>~O).  

Apparatus 

The wet spinning apparatus was the same as that used in the authors earlier 
studieslg and described in more detail e l~ewhere .~~ The spinneret diameter was 
0.0381 cm and the extrusion rate 0.6 cm3/min. 

Results and Comparison to Experiment 

The nylon solutions emerging from the spinneret showed a swell d/D of 1.5. 
With the water coagulant, the value of dlD or d* for the final fiber was 1.05 and 
0.85 for the formic acid-water coagulant. 

The pertinent dimensionless groups have values for this system of 

pFdo/xGp = 0.20 

Gp/pdo%ext = 20,000, (kex,)odo/% = 12.2 

%int/%ext = 

A Trouton ratio (x&) of 30 was used. 
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0 500 1000 15 
x* , - 

Fig. 9. Comparison of first-order and second-order models with experiment for spinning of nylon 
solution using water and 0.15 wt % formic acid coagulating baths. 

In Figure 9, we contrast the predicted drawdown profiles and the observed 
final diameters for the filaments. There is rather good agreement between theory 
and experiment for the second-order model. The first-order model predicts a 
much too rapid drawdown. 

We would like to thank Professor J. E. Spruiell for his helpful comments throughout the course 
of this study. 
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